Get Eli: Translator Construction Made Easy at
    Fast, secure and Free Open Source software downloads

General Information

 o Eli: Translator Construction Made Easy
 o Global Index
 o Frequently Asked Questions


 o Quick Reference Card
 o Guide For new Eli Users
 o Release Notes of Eli
 o Tutorial on Name Analysis
 o Tutorial on Type Analysis

Reference Manuals

 o User Interface
 o Eli products and parameters
 o LIDO Reference Manual


 o Eli library routines
 o Specification Module Library

Translation Tasks

 o Lexical analysis specification
 o Syntactic Analysis Manual
 o Computation in Trees


 o LIGA Control Language
 o Debugging Information for LIDO
 o Graphical ORder TOol

 o FunnelWeb User's Manual

 o Pattern-based Text Generator
 o Property Definition Language
 o Operator Identification Language
 o Tree Grammar Specification Language
 o Command Line Processing
 o COLA Options Reference Manual

 o Generating Unparsing Code

 o Monitoring a Processor's Execution


 o System Administration Guide

Open PDF File

Syntactic Analysis

The purpose of syntactic analysis is to determine the structure of the input text. This structure consists of a hierarchy of phrases, the smallest of which are the basic symbols and the largest of which is the sentence. It can be described by a tree with one node for each phrase. Basic symbols are represented by leaf nodes, and other phrases by interior nodes. The root of the tree represents the sentence.

This manual explains how use a `.con' specification to describe the set of all possible phrases that could appear in sentences of a language. It also discusses methods of resolving ambiguity in such descriptions, and how to carry out arbitrary actions during the recognition process itself. The use of `.perr' specifications to improve the error recovery of the generated parser is described as well.

Computations based on the input can be written with attribute grammar specifications that are based on an abstract syntax. The abstract syntax describes the structure of an abstract syntax tree, much the way the concrete syntax describes the phrase structure of the input. Eli uses a tool, called Maptool, that automatically generates the abstract syntax tree based on an analysis of the concrete and abstract syntaxes and user specifications given in files of type `.map'. This manual will describe the rules used by Maptool to determine a unique correspondence between the concrete and abstract syntax and the information users can provide in `.map' files to assist in the process.

This manual will also discuss how Maptool makes it possible to only partially specify the concrete and abstract syntaxes, as long as together they specify a complete syntax.